Matemática

Conceito de média: A média ponderada é também uma média aritmética

Antonio Rodrigues Neto, Especial para a Página 3 Pedagogia & Comunicação

O conceito e a ideia de média estão sempre relacionados com a soma dos valores de um determinado conjunto de medidas, dividindo-se o resultado dessa soma pela quantidade dos valores que foram somados.

Esse procedimento é o que definimos como média aritmética simples e que estamos acostumados a aplicar nas estimativas que fazemos diariamente.

Não faltam brincadeiras em relação a esse tipo de cálculo quando, ironicamente, calculamos a média salarial de, por exemplo, determinada empresa somando o maior salário com o menor e dividindo por dois. É uma boa piada somar o salário do presidente dessa empresa, de R$ 20.000,00, com o salário do estagiário, no valor de R$ 800,00, e concluir que o salário médio dessa instituição é de R$ 10.400,00:

? = R$ 2 0 . 0 0 0 , 0 0 0 + R$ 8 0 0 , 0 0 2 = R$ 2 0 . 8 0 0 , 0 0 2 = R$ 1 0 . 4 0 0 , 0 0

Ao fazer essa conta, aplicamos corretamente o conceito de média aritmética para esses dois valores, no entanto, para se ter uma medida mais próxima do salário médio da empresa, o correto seria somar todos os salários que a compõem e dividir o resultado da soma pelo número correspondente de pessoas que recebem os salários. Para isso, nada melhor do que utilizar a folha de pagamento.

Mas vamos continuar usando o exemplo dessa empresa cujo presidente recebe um salário de R$20.000,00, o vice-presidente R$14.000,00, doze engenheiros R$2.000,00 cada um e mais seis estagiários que recebem, como já sabemos, somente R$800,00:
 

Cargo Quantidade Salário
Presidente 1 R$20.000,00
Vice-presidente 1 R$14.000,00
Engenheiros 12 R$2.000,00
Estagiários 6 R$800,00

O cálculo da média salarial deverá considerar os quatro valores distintos dos salários com suas respectivas quantidades. Os doze engenheiros são os que dão maior peso à folha de pagamento, com um montante de R$24.000,00, ou seja, 12 x (R$2.000,00). Já os estagiários são os que dão menos despesa na folha, com 6 x (R$800,00) = R$4.800,00. Assim, fazemos o cálculo correto considerando os vinte salários da empresa e não somente dois:

 

? = R$ 2 0 . 0 0 0 , 0 0 + R$ 1 4 . 0 0 0 , 0 0 + 1 2 × R$ 2 . 0 0 0 , 0 0 + 6 × R$ 8 0 0 , 0 0 2 0
? = R$ 6 2 . 8 0 0 , 0 0 2 0 = R$ 3 . 1 4 0 , 0 0

Outra brincadeira com o conceito de média seria somar apenas os valores dos salários, desconsiderando a quantidade de cada um deles e comentando que a empresa tem quatro salários, identificados como vinte mil, quatorze mil, dois mil e oitocentos reais. E, finalmente, concluindo que a média é igual a R$9.200,00 (a partir da soma despretensiosa desses valores com a respectiva divisão por quatro):

? = R$ 2 0 . 0 0 0 , 0 0 + R$ 1 4 . 0 0 0 , 0 0 + R$ 2 . 0 0 0 , 0 0 + R$ 8 0 0 , 0 0 = R$ 3 6 . 8 0 0 , 0 0 4 = R$ 9 . 2 0 0 , 0 0

Essa última forma de ironizar esse tipo de cálculo aritmético mostra que não basta divulgar todos os valores envolvidos - e que é essencial incluir a quantidade de cada um deles, ou, em outras palavras, o peso de cada um desses valores.

Esse termo, "peso", que é sempre apresentado na média ponderada, surge na média aritmética a partir da repetição de algumas medidas. No nosso exemplo, cada salário possui um peso, sendo que os engenheiros vencem com uma boa margem de folga. Podemos, inclusive, analisar a fração de pessoas correspondentes a cada salário, transformando cada uma dessas frações em porcentagem:

1 Presidente 1 2 0 = 0 , 0 5 5 %?
1 Vice-presidente 1 2 0 = 0 . 0 5 5 %
12 Engenheiros 1 2 2 0 = 0 , 6 6 0 %
6 Estagiários 6 2 0 = 0 , 3 3 0 %

Dessa forma, a média é calculada considerando o peso de cada salário na folha de pagamento:

? = 0 , 0 5 × R$ 2 0 . 0 0 0 , 0 0 + 0 , 0 5 × R$ 1 4 . 0 0 0 , 0 0 + 0 , 6 × R$ 2 . 0 0 0 , 0 0 + 0 , 3 × R$ 8 0 0 , 0 0
? = R$ 1 . 0 0 0 , 0 0 + R$ 7 0 0 , 0 0 + R$ 1 . 2 0 0 , 0 0 + R$ 2 4 0 , 0 0 = R$ 3 . 1 4 0 , 0 0

É nessa repetição dos valores das medidas, produzindo um peso respectivo para cada valor, que surge o conceito de média ponderada.

A média aritmética simples produz a média ponderada em função da repetição das medidas. Geralmente, a média ponderada é apresentada com regras pré-estabelecidas para os seus pesos, dando a aparência de que se trata de outra fórmula, muito diferente da média aritmética.

Todo estudante passa pela experiência de calcular a sofrida média anual em função dos pesos dados para cada bimestre ou semestre. Se uma escola construir a regra de que a média do primeiro semestre possui peso igual a 30%, enquanto que, no segundo semestre, o peso é igual a 70%, isso obrigaria o aluno com nota 6,0 no primeiro semestre e 4,0 no segundo a calcular uma média com resultado igual a 4,6:

? = 0 , 3 × 6 , 0 + 0 , 7 × 4 , 0 = 1 , 8 + 2 , 8 = 4 , 6

É como se ele tivesse feito 10 provas, conseguindo três notas iguais a 6,0 e sete notas iguais a 4,0. Se fosse uma média aritmética simples, teria passado de ano somando 4,0 com 6,0, dividindo por dois e obtendo, portanto, um apertado valor 5,0. No final, poderia ser interpretado também com uma média ponderada com peso de 50% para cada nota, mostrando que toda média ponderada é também uma média aritmética.

Antonio Rodrigues Neto, Especial para a Página 3 Pedagogia & Comunicação professor de matemática no ensino fundamental e superior, é mestre em educação pela USP e autor do livro "Geometria e Estética: experiências com o jogo de xadrez" pela Editora da UNESP.

UOL Cursos Online

Todos os cursos