Diagonais de um polígono convexo - Como calcular o número de diagonais?
Dado um polígono convexo qualquer, diagonal é o segmento que une dois vértices não consecutivos (ou adjacentes).
Exemplos:
Um triângulo não possui diagonais, pois, como só possui três vértices, não é possível unir dois vértices não consecutivos.
Cálculo do número de diagonais
Vamos aprender a calcular o número de diagonais de um polígono convexo qualquer.
Basta observar os exemplos:
Na figura 1, temos 5 vértices no total. Do vértice A, podemos traçar diagonais para os vértices C e D, que não são adjacentes a ele. Do vértice B, podemos traçar diagonais para os vértices D e E, seus não adjacentes. Assim, de cada vértice, é possível traçar 2 diagonais, pois são 5 vértices, menos 2 adjacentes e o próprio vértice considerado.
Se pensássemos em 2 diagonais por vértice, teríamos 2 x 5 = 10 diagonais. No entanto, podemos observar só 5. Isso ocorre porque as diagonais AD e DA são a mesma diagonal.
Na figura 2, ocorre a mesma coisa: temos 4 vértices e, descontando, para cada vértice, os dois vértices adjacentes e o próprio vértice considerado, teremos 1 diagonal por vértice e 4 x 1 = 4 diagonais ao todo. No entanto, só temos 2, pelo mesmo motivo da figura 1.
Na figura 3, são 6 vértices ao todo. Se descontarmos, para cada vértice, 3 vértices para onde não podemos traçar diagonais, teremos 3 diagonais por vértice e 6 x 3 = 18 diagonais ao todo. No entanto, só podemos observar 9.
Na figura 4, são 7 vértices ao todo. Se descontarmos, para cada vértice, 3 vértices para onde não podemos traçar diagonais, teremos 4 diagonais por vértice e 7 x 4 = 28 diagonais ao todo. No entanto, só podemos observar 14.
A partir desses exemplos, podemos observar a regularidade e generalizar, para qualquer polígono.
Assim, para um polígono convexo qualquer, podemos achar o número de diagonais d a partir do número n de vértices da seguinte forma:
- descontando de n os 3 vértices para onde não podem ser traçadas diagonais (os 2 adjacentes e ele mesmo): n - 3;
- multiplicando o resultado obtido pelo número de vértices: n . (n - 3) ;
- dividindo o resultado obtido por 2, devido às diagonais repetidas:
Assim, a fórmula que calcula o número de diagonais de um polígono convexo qualquer é:
ID: {{comments.info.id}}
URL: {{comments.info.url}}
Ocorreu um erro ao carregar os comentários.
Por favor, tente novamente mais tarde.
{{comments.total}} Comentário
{{comments.total}} Comentários
Seja o primeiro a comentar
Essa discussão está encerrada
Não é possivel enviar novos comentários.
Essa área é exclusiva para você, assinante, ler e comentar.
Só assinantes do UOL podem comentar
Ainda não é assinante? Assine já.
Se você já é assinante do UOL, faça seu login.
O autor da mensagem, e não o UOL, é o responsável pelo comentário. Reserve um tempo para ler as Regras de Uso para comentários.