Teorema de Pitágoras - Conheça o mais importante e conhecido teorema
Atualizado em 1/08/2011, às 15h36.
Todo estudante já se deparou com inúmeros problemas que usam em sua resolução o teorema de Pitágoras. E quem ainda não teve de resolver um problema assim, com certeza ainda vai enfrentar muitas vezes questões desse tipo.
Um teorema, para sair da condição de proposição, necessita ser provado. Por se tratar de um dos teoremas mais famosos da matemática, o teorema de Pitágoras já foi objeto de inúmeras respostas para prová-lo, o que o torna ainda mais valioso, demonstrando sua complexidade.
Se você não o conhece, eis seu enunciado:
Uma das formas de provar, bastante interessante, é a apresentada a seguir:
Primeiro construiremos um trapézio formado por 3 triângulos, 2 de catetos a e b e hipotenusa h, conforme a figura. Note que o terceiro triângulo é isósceles (dois lados iguais a h).
A área desse trapézio é "base maior mais base menor sobre 2 vezes a altura (a+b)":
Mas a figura também pode ter a sua área definida como a soma dos 3 triângulos:
Igualando-se as duas áreas:
C.Q.D. - Como se queria demonstrar (em latim, Q.E.D. - quod erat demonstrandum).
ID: {{comments.info.id}}
URL: {{comments.info.url}}
Ocorreu um erro ao carregar os comentários.
Por favor, tente novamente mais tarde.
{{comments.total}} Comentário
{{comments.total}} Comentários
Seja o primeiro a comentar
Essa discussão está encerrada
Não é possivel enviar novos comentários.
Essa área é exclusiva para você, assinante, ler e comentar.
Só assinantes do UOL podem comentar
Ainda não é assinante? Assine já.
Se você já é assinante do UOL, faça seu login.
O autor da mensagem, e não o UOL, é o responsável pelo comentário. Reserve um tempo para ler as Regras de Uso para comentários.